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Abstract

We study government interventions in a dynamic market with asymmetric information. We show that
restricting trading opportunities after an initial round of trade is always optimal. Under a sufficient condition
it is optimal to subsidize trades only at time zero while imposing prohibitively high taxes afterwards. If
interventions are required to generate a Pareto improvement over laissez-faire then trade is only restricted
for a short amount of time. If additional sellers can arrive later, the optimal policy entails asset purchases
and price controls. Subsidies can greatly enhance welfare but can be detrimental if provided with delay.
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1. Introduction

During times of financial distress, such as those experienced in 2008 after the demise of
Lehman Brothers, asset sales are an important source of funds for financial institutions such
as banks and insurance companies. Unfortunately, the big gains from trade between those that
are liquidity constrained and those that are not may be difficult to realize due to asymmetric
information. As in the classic Akerlof (1970) market for lemons, if buyers were to pay the price
corresponding to the average quality of the assets in the market, sellers holding the best assets
might not wish to trade. Realizing this, buyers would then reduce their offers and end up trading
with a small fraction of the sellers or none at all. Absent government intervention, trade either
completely stops or slows down. In the latter case, over time prices gradually rise as better and
better assets are traded in the market.

The main questions we seek to answer in this paper are whether and how should the govern-
ment intervene in these situations, even if it has a binding budget constraint. We answer them in
a model of a dynamic competitive market in which liquidity-constrained sellers have private in-
formation about their assets and homogeneous, liquidity-abundant buyers compete to buy those
assets.

Several recent papers document how different financial markets had drastic reductions in vol-
ume in the aftermath of Lehman Brothers’ collapse in 2008. Among others, Heider et al. (2009)
discuss the collapse of the interbank market, McCabe (2010) discusses the money market funds
and Duffie (2010) discusses the OTC and repo markets. These contractions were largely driven
by the uncertainty over the counterparty’s ability to meet its obligations and the disagreement
over the value of securities that could be used as collateral. This was clearly reflected in the
OTC market where the types of securities acceptable as collateral significantly changed. Infor-
mation sensitive securities were largely replaced by cash. Similarly, the assets under management
of money market funds saw a big compositional change at the time of Lehman’s collapse with a
pronounced drop in the amount of asset-backed commercial paper and a large increase of govern-
ment securities. These recent events motivate our interest in dynamic markets with asymmetric
information and the impact of government interventions on such markets.

We first characterize the laissez-faire equilibrium (Proposition 1). Assuming a continuum of
seller types, competitive buyers, and continuous time, leads to a very tractable equilibrium. It is
characterized by a smooth flow of trade where worst assets are sold first and both the quality of
traded assets and price gradually increase over time.

Our first policy result (Lemma 1) is that introducing high taxes for an interval of time, A > 0,
after an initial round of potentially subsidized trade, is always a part of an optimal policy. By
taxing future trades, the government creates more incentives to trade in the early tax-exempt pe-
riod. In particular, holders of higher quality assets that would delay trade absent the government
policy now prefer to trade earlier in order to avoid the taxes or excessive delay. As the quality
of the pool of assets sold early improves, market price increases as well. Higher prices in turn
induce even more trade creating a virtuous cycle.

Our second policy result (Theorem 1) shows that under a sufficient regularity condition on
the shape of the gains from trade and the distribution of asset values, it is optimal to allow only
one (potentially subsidized) round of trade at time zero while imposing prohibitively high taxes
afterwards (i.e. setting A = 00). Intuitively, the regularity condition implies that the ratio of the
marginal gains from trade to the marginal information rents of the sellers is decreasing in the
asset quality. Under this condition, the solution to the optimization problem has a bang-bang



W. Fuchs, A. Skrzypacz / Journal of Economic Theory 158 (2015) 371-406 373

property: it is optimal to push as much trade as possible to take place immediately even if it
comes at the expense of excluding all higher types from trade altogether.”

Since the optimal policy effectively excludes higher types from trading, these types are worse
off than they would be in the laissez-faire equilibrium. An important question and our most novel
results come from analyzing optimal policy subject to making all players better off than in the
laissez-faire benchmark. We show than in this case it is still always optimal to effectively close
the market for some time after the initial round of trade. Under a similar regularity condition to
that of Theorem 1, in Theorem 2 we show that the optimal intervention in this case involves an
initial round of trade followed by a short period of high taxes, followed again by trading with no
taxes. Under the optimal policy, low-quality assets (below a threshold) are pooled and trade at
time 0; better assets (above the threshold) are screened perfectly and trade at the same times and
terms as in the laissez-faire economy.

In Section 5.1 we extend the model by allowing for additional distressed sellers to arrive over
time. The optimal policy in this case does not shut down the market (Theorem 3). Instead, the
optimal policy entails asset purchases by the government and price controls. It can be decen-
tralized by controlling market prices: by allowing for just one constant price in the market, the
buyers effectively face a take-it-or-leave-it offer whenever they arrive. As in Theorem 1, buyers
either trade immediately upon arrival or never trade. Again, they key for efficiency gains is that
the policy removes benefits from delaying trade (the terms of trade do not get better), and that
reduces the adverse selection problem because higher types pool with lower types.

Throughout the paper we allow the government to carry out non-budget neutral interventions.
This is important for both normative and positive considerations. We show that there can be big
returns from spending some resources on subsidies/bail-outs in these markets: even if raising a
dollar in revenues from another market induces some deadweight loss, it may still be optimal to
subsidize these markets. This is best illustrated by showing that in certain cases even with the
best budget-neutral intervention there is no trade in the market (see Section 4.4). By providing
an initial subsidy the government is able to jump-start the market and greatly increase the overall
surplus.

Our results in Section 5.3 stress the importance of acting quickly. Via a series of examples
we demonstrate that the timing of the subsidies is crucial. If the government moves slowly and
the subsidy is expected to arrive in the future (either deterministically or stochastically) then
it can actually have a negative effect on welfare. The intuition is that the expectation of future
subsidies delays current trade. So, although there is clearly a benefit from subsidizing trades, it
is of the essence that the government acts fast. While the flexibility of the Federal Reserve and
its ability to act fast was likely crucial in the recent crisis, some of the uncertainty over future
interventions/subsidies may have contributed to the reduction in trade volume in private markets.

Lastly, we note that the exact form of the subsidy is not important, as long as the information
rents collected by the different seller types are unchanged (and transaction costs are the same).
A proportional subsidy, as assumed for concreteness in the paper, or a government guarantee
on the payoff of the assets, as implemented during the crisis with the Public—Private Investment
Program for Legacy Assets, would have equivalent effects. Outright purchases of assets, as im-
plemented with the TARP program, would also be equivalent, but only if the program budgeting
accounted for the expected future proceeds from the assets purchased by the government. For

2 This is related to the result that a durable-good monopolist facing a demand curve with decreasing marginal revenue,
would like to commit to set constant price. Such price induces high valuation buyers to buy immediately and the rest of
the buyers never to trade, that is, under commitment the seller would not want to use time to screen buyers.
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example, a subsidy program with a budget b is equivalent to a purchase program with a budget b,
if the budget in the latter case is on net losses from the program and not on total purchases.’

Related literature

Optimal government interventions in similar models have been studied recently by Philippon
and Skreta (2012) and Tirole (2012). In these papers, the government offers financing to firms
having an investment opportunity and it is secured by assets that the firms have private infor-
mation about (these are sellers in our model — using an asset as a collateral or selling it to
obtain financing are essentially economically equivalent). That round of government financing
is followed by a static competitive market in which firms that did not receive funds from the
government can raise funds in a private market. This creates a problem of “mechanism design
with a competitive fringe” as named by Philippon and Skreta (2012): the government interven-
tion affects the post-intervention equilibrium and vice versa (a feature shared by our model).
In sharp contrast to our results, both papers show that tampering with the private markets does
not improve welfare: see Proposition 2 in Tirole (2012) and Theorem 2 in Philippon and Skreta
(2012). Since the post-intervention market creates endogenous IR constraints for the agents par-
ticipating in the government program, making the market less attractive could make it easier for
the government to intervene. However, these two papers argue that this is never a good idea.

The key difference between our model and these two papers that leads to these opposing
results is that Philippon and Skreta (2012) and Tirole (2012) assume a static model of the private
market, while we study a dynamic market. It is best seen in the light of our Theorem 1: under the
regularity condition, it is indeed optimal to have a government subsidy at time zero and all trade
happening at time zero, with no additional trades in the future. Beyond this crucial difference in
results and their practical interpretation, our paper differs from these two papers in terms of the
focus on the dynamics of trade and the tradeoffs in dynamic interventions.

Lemma 1 and the bang-bang property of the optimal intervention in Theorem 1 are math-
ematically related to the findings of Samuelson (1984). In a static setting he shows that the
optimal budget-neutral mechanism divides sellers into at most three groups: a group that trades
with probably one, a group that trades with a common intermediate probability and a group that
does not trade. In our dynamic setting this translates respectively to a group that trades imme-
diately, a group that trades with delay and a group that never trades. Our Theorem | contributes
to his result by establishing a sufficient condition for the optimal mechanism having trade only
at t = 0. Moreover, we show how the optimal direct revelation mechanism can be implemented
in a decentralized market with a particular government policy that induces a unique competi-
tive equilibrium. In addition, we also extend the prior results by allowing for non-budget-neutral
interventions.

Our result on Pareto improving interventions has a historical connection to the political econ-
omy models of reform with consensus or majority voting.* Within this literature the closest paper
is Brusco and Hopenhayn (2007). They look at the problem of eliminating an inefficient regula-
tion such as trade barrier that keeps unproductive firms in business. Firms are privately informed

3 That assumes that the government holding the assets to maturity is as efficient as private buyers holding the asset. If
not, then after purchasing the assets the government should pool them into a portfolio and sell shares of the portfolio to
buyers with liquidity. Since the government can commit to pool all of the assets, there would be no (additional) adverse
selection problem in creation and sales of the portfolio.

4 See for example Fernandez and Rodrik (1991).
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about their production costs and the optimal policy determines when such firms must be shut
down. One difference with our model is that we have interdependent values between sellers and
buyers while in theirs the value to the consumers is independent of the production cost.” Their
main result with commitment has firms exiting at most at two times. While this is similar to our
Lemma 1, the right comparison is to Theorem 2, where we require the policy to achieve a Pareto
improvement. In this case, we have that a subset of types trade at time zero but then all other
types perfectly separate from each other. Thus our results, although related, are quite different.

Two related papers, Heider et al. (2009) and Bolton et al. (2011), combine the problem of ad-
verse selection with one of maturity mismatch. Although we do not model the maturity mismatch
problem explicitly, we believe it had an important role in the recent crisis and our liquidity-
constrained sellers likely are in that situation because of it. That is, we see the maturity mismatch
problem as a possible micro-foundation of our model of gains from trade and asymmetric infor-
mation. Heider et al. (2009) have a 3 period model of the interbank market. Banks in need of
liquidity can use the interbank market to borrow from those with excess liquidity. Asymmetric
information about the quality of the assets in the borrower’s balance sheets makes lenders afraid
of lending to a “lemon” leading to a reduction or complete disappearance of credit. They discuss
some policy interventions but their focus is positive rather than normative and essentially static.°

On the theoretical side, our paper is also related to literature on dynamic markets with adverse
selection. The closest paper is Janssen and Roy (2002) who study competitive equilibria in a mar-
ket that opens at a fixed frequency. They show that in equilibrium prices increase over time and
eventually every type trades. They do not ask market design or policy questions as we do in this
paper. Yet, we share with their model the observation that dynamic trading leads to increasingly
better types trading over time. Camargo and Lester (2014) find the same equilibrium dynamics
in a setting with decentralized search rather than a competitive market (in discrete time, with
two types of the seller). While their paper is focused on characterizing the set of equilibria of
the game with no government intervention, they also show that sunset provisions can increase
benefits of government subsidies. Sunset provisions are useful because, as we show in this paper,
expectation of future subsidies can slow down current trade. Our paper shows other examples of
problems of delayed/prolonged interventions and adds to this analysis by characterizing the op-
timal polices. Also in a search setting with two types of asset Chiu and Koeppl (2011) argue that
search frictions are crucial for adverse selection to play an important role and that delaying the
asset purchasing programs might be a good idea. Our model has no search frictions yet adverse
selection can cause the market to completely shut down and we show that delaying interventions
is costly.

On the more technical side, our competitive-equilibrium setup with a continuum of types
and continuous time allows us to show uniqueness of equilibrium, which makes it easier to
interpret comparative statics. For other papers on dynamic signaling/screening with a competitive
market see Noldeke and van Damme (1990), Swinkels (1992), Kremer and Skrzypacz (2007) and
Daley and Green (2012). While we share with these papers an interest in dynamic markets with
asymmetric information, none of these papers studies government interventions.

While in this paper we study government interventions in terms of taxes and subsidies, there
are other ways the government or market designer can affect trade in equilibrium. For example,

5 They also have heterogeneous consumers that obtain consumer surplus, while we have homogeneous buyers that
make zero profits in equilibrium.

6 Bolton et al. (2011) is a bit further from our work since they focus more on the ex-ante asset choices and assume
there is no asymmetric information initially but that it grows over time.
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in our related working paper, Fuchs and Skrzypacz (2013), we allow the market designer to de-
termine the times the market should be open or closed. The market microstructure literature (see
Biais et al., 2005) has also considered the question of how different trading protocols perform in
the presence of adverse selection. That literature has mainly focused on the stock markets where
there are potentially many competing sellers, divisible assets and dispersed information. A dif-
ferent design question for dynamic markets with asymmetric information is asked in Horner and
Vieille (2009), Kaya and Liu (2012), Kim (2012) and Fuchs et al. (2015). These papers ask how
information about past rejected offers affects efficiency of trade. Moreno and Wooders (2012)
ask a yet another design question: they compare decentralized search markets with centralized
competitive markets.

2. The model

There is a mass of size one of financially distressed banks (the sellers). Each seller owns one
unit of an indivisible asset. When the seller holds the asset, it generates for him a revenue stream
with net present value ¢ € [0, 1], x that is private information of the seller. The seller types, c,
are distributed according to F (c), which is common knowledge, atomless and has a continuous,
strictly positive density f (c). We assume that the private information is never revealed.’

There is a competitive market of potential buyers. Each buyer values the asset at v (¢) which
is strictly increasing, twice continuously differentiable, and satisfies v (¢) > ¢ for all ¢ € (0, 1),
v(0) >0, and v (1) = 1 (i.e. no gap on the top).®

Time is t € [0, oo] and the market is continuously open. There is also a benevolent government
that can intervene by subsidizing or taxing trades proportionally.”>'" The government publicly
commits to a path of taxes 1, for ¢ € [0, oo] before the market opens at t = 0. If at time ¢ buyers
pay price py, the sellers receive p; (1 — 1;); t; < O represents a subsidy.

All players discount payoffs at a rate r. If a seller with type c sells at time ¢ at a price py, its
payoff is

(I—e)c+e " pi(1—1)

and the buyer’s payoff at the time of purchase is:

v(c) = pr-

Given a path of prices and taxes, the sellers face an optimal stopping problem. Namely, when
to sell and collect p; (1 — 7;):

max (1 —e*’f)c—i—e*rfp; (1-1). (1)
t

7 Most of our results can be extended to a setting in which at some deterministic or random time the private information
becomes public, but the players cannot contract on the realization of this information (see the working paper of Fuchs
and Skrzypacz, 2013). While the cashflows generated by the asset (which are correlated with ¢) are realized by the buyer,
we assume that the buyer and the seller cannot contract on their realization, i.e., we assume that the seller cannot offer
warranty contracts on the assets he sells.

8 Assuming v (1) = 1 allows us not to worry about out-of-equilibrium beliefs after a history where all sellers were
supposed to trade but some did not trade. The equilibria we characterize in this paper continue to exist even if v (1) > 1
but may no longer be unique. A monotonicity condition on beliefs would select this equilibrium.

9 As discussed in Remark 1, the exact form of the subsidy turns out not to matter.

10 In Section 5 we allow for a richer set of instruments.
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Since the stopping problem is supermodular in ¢ and 7, if seller of type ¢ has an optimal stop-
ping time ¢ then all types ¢’ < ¢ have optimal stopping times ¢’ < ¢ (even if the optimal stopping
time for some types is not unique). The intuition is that the lower types get the same payoff from
selling as type c, but forego less of future cash flows. This is known as the “skimming property”
and it simplifies equilibrium analysis since in equilibrium the set of seller types remaining in the
market at any time is a truncation of the original seller distribution.

Let #* (c) be some selection of the optimal stopping times given the net-price process,
pi (1 — ;). Let k; denote the lowest quality asset that has not been traded by time :

ki =inf{c:7* (c) > 1}.

Note that k; is left-continuous and it is independent of the selection of the optimal stopping times
(since for any ¢ at most zero measure of types are indifferent between stopping at that time and
some other time).

We use K; to describe the (set of) types that trade at ¢. There are three possibilities: (i) if &;
is constant to the right of ¢, that means there is no trade at ¢, and we denote it by K, = ; (ii) if
k; increases continuously to the right of ¢, it means trade is smooth at 7, and we denote it by
K; = ky; (iii) if k; jumps discontinuously from k; to k,+ = lim,_, ,+ k;, it means that there is an
atom of trade at 7, and we denote by K; = [k, k,+]."?

With this notation we define a competitive equilibrium:

Definition 1. Given a tax schedule {t;}, a competitive equilibrium is a pair of functions {p;, k;}
for ¢ > 0 that satisfy:

(E1) Zero Profit Condition: if K; # @, then p; = E [v (c) |c € K;].

(E2) Seller Optimality: Sellers optimally choose their stopping times (i.e., k; is consistent with
seller optimization given p; and ;).

(E3) Market Clearing: for all ¢, p; > v (k).

Conditions (E1) and (E2) are standard. Condition (E3) deserves a bit of explanation. It is
needed because condition (E1) provides no discipline when K; = ¢J. We justify it by a market
clearing reasoning, that is, that given the market prices, demand equals supply. Suppose at some
t the assets were offered at p; < v (k;). Then, since all buyers believe that the value of the assets
is at least v (k;), they would all demand it. Demand would not equal supply and the market
would not clear.'? This condition removes some trivial multiplicity of equilibria. For example,
it removes as a candidate equilibrium the path (p;, k;) = (0, 0) for all periods (i.e. no trade and
very low prices) even though this path satisfies the first two conditions.'*

We assume that all market participants publicly observe all the trades. Hence, once a buyer
purchases an asset, if he tries to put it back on the market, the market makes a correct inference
about ¢ based on the history. Since we assume that all buyers have the same value of the asset,

' Ty assure the stopping problem has a solution, we restrict t; to be such that we can construct equilibrium p; so that
pr (1 — 1¢) is right-continuous when it is increasing and left-continuous when it is decreasing.

12 We use the notation ky+, ps+, etc., to denote right-limits of the corresponding functions at .

13 We thank Andrew Postlewaite for pointing this out to us.

14 Condition (E3) is analogous to the condition (iv) in Janssen and Roy (2002) and is weaker than the No Unrealized
Deals condition in Daley and Green (2012) (see Definition 2.1 there; since they study the gap case with private offers,
they need a stronger condition to account for out-of-equilibrium beliefs).
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there would not be any profitable re-trading of the asset (after the initial seller transacts) and,
hence, we ignore that possibility.

2.1. Laissez-faire equilibrium

Absent government interventions, i.e., if ; = 0 for all ¢, the equilibrium has no atoms of trade
and is given by'>:

Proposition 1 (Laissez-faire). If T, = 0 for all t, there exists a unique competitive equilibrium.
The equilibrium is the unique solution to:

pr=v (k)
ko=0
r (v (ke) —ke) =0 (ko) by )

To see the intuition (proof is in Appendix A), note that if an interval of types traded at time ¢,
Condition (E£3) would require that an instant later p,+ > v (k,+). However, that would imply a
jump in prices at ¢ since p; = E [v(c) |c € K;] < v (k,+). But if prices jumped, no type would
trade the instant before the jump. Hence, k; is a continuous function in equilibrium. Therefore,
by Condition (E'1), p; = v (k;) when there is trade. The differential equation for k; comes from
seller optimality: at each point in time, the current cutoff type k; must be indifferent between
trading or delaying trade for an instant. The gain from waiting for an instant of time is that
prices rise over time while the cost of delaying trade is the lost interest on the gains from trade.
Together:

r(pr — ki) = pr.

Using p; = v (k;), this tradeoff can be stated as:
r (k) —ke) =" (ko) k. 3)

This differential equation, together with the boundary condition kg = 0, pins down the equilib-
rium path of &;.

We obtain this remarkably simple characterization of the equilibrium in a dynamic market
with adverse selection thanks to a combination of assumptions: continuous time, continuum of
types, and frictionless, competitive-buyers market. Without it, there could be multiple equilibria,
they would not be fully separating, and would be typically hard to characterize. For example, if
time is discrete, in every period an atom of types would trade and there would be in general a
multiplicity of equilibria (as in Janssen and Roy, 2002).

Note that if v (0) = 0 (i.e. no strict gains from trade in the bottom of the distribution), there is
no trade in equilibrium.'® Moreover, the dynamics of (p;, k;) in the laissez-faire equilibrium do
not depend on the shape of the distribution F (c) but only on its support. The shape of F (c¢) will

15 By k; we denote the time derivative of ;.

16 This can be seen from Eq. (3). Continuous trading is not necessary for this result to hold. If trading is at discrete
intervals of time A this result would continue to hold for small A if f (0) > 0. Even for A = oo the result may continue
to hold, as we show in Section 4.4.
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Fig. 1. Example of gains from trade.

play a role once we introduce government interventions that generate atoms of trade. Finally,
total surplus/gains from trade in the laissez-faire equilibrium are:

e’} 1
SLF = / e (k) — k) ke f (k) dt = / e (v (c) —¢) f (e)de,
0 0

where 7 (c) is the inverse of k;. Condition (3) implies 7 (¢) = r(vv(/c()tz o and hence Sy is in-
dependent of the discount factor (since ¢ and v (c¢) are present values, the first-best surplus is
independent of r as well). The intuition is that since in equilibrium all types eventually trade,
the deadweight loss is due to the delay of trade. While a smaller discount implies that any fixed
delay is less costly, by condition (3) a smaller r implies more delay. Since the speed of trading,

k;, is proportional to r, these two forces cancel each other out.

3. Government interventions: motivating examples

We start with the following benchmark example to illustrate the benefits of imposing future

taxes to increase early trading. Assume c is distributed uniformly over [0, 1] and v (c) = 1—'2”, as

illustrated in Fig. 1.

Laissez-faire economy
Absent any government interventions in this example the equilibrium cutoffs are:

LF rt
k! .

=1—-e"
The total surplus in the laissez-faire economy is:
1
—ri(c) 1
Sir= | e (v(c)—c)f(c)dc:a
0

Note that even though asymptotically all types trade in equilibrium, the equilibrium is ineffi-
cient due to delay. The first-best has all types trading immediately (i.e., 7 (¢) = 0) and surplus is

f()1 (w(c)—o) f(c)de= % > SiF.

Initial subsidy followed by constant permanent tax

Now consider the following government intervention. The government provides an initial
subsidy s = —1p > 0 per unit traded at time O and then finances this subsidy with a constant
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Fig. 3. Surplus relative to first best with a tax-exempt auction followed by a constant tax.

tax rate 7, = t for r > 0, to (dynamically) achieve budget balance. One interpretation of this
intervention is that the government levies a constant tax rate on the market to finance a subsidized
auction at time 0.

To construct the equilibrium we solve the following fixed point problem. We first solve for the
equilibrium for any s and 7. Then, we look for pairs of (s, 7) that are budget neutral. The amount
of initial trade depends on the initial subsidy; how much of a subsidy can be provided depends
on the amount of trade after r > 0 which, in turn, is a function of which types trade at t = 0.

The one-time subsidy at time O induces an atom of trade at time 0 and the constant tax later
implies either no trade (if the tax is high enough) or smooth trade. We provide the detailed
computations in Appendix A and focus here on how the dynamics and welfare depend on 7.

How does the equilibrium depend on t?

In Fig. 2 we plot equilibrium cutoffs, k;, for different tax rates: the dashed line has T = 15%,
the solid line T = 5% and the dotted line has T = 0%. As shown, a higher tax rate leads to
a higher initial cutoff but slower trade thereafter. In other words, as taxes increase, there is a
tradeoff between trading faster with the lower types at the expense of slower trade with higher

types.

How does the total surplus change with t?

Fig. 3 shows that in this example surplus (the solid line, represented as a fraction of first-best
surplus) monotonically increases in the level of taxes. For sufficiently high taxes (r > 20%),
there is no trade after ¢+ = 0 and the surplus is only 11% below first best. With no intervention it
is 33% below.

Somewhat surprisingly, even if the taxes are levied but not used for the initial subsidy
(i.e., if s =0 but v > 0), the surplus is also increasing in 7, as shown by the dashed line
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in Fig. 3. Comparing the two curves, for small tax rates, the initial subsidy has a large con-
tribution to the welfare gains; yet, for large tax rates the difference is small. The reason
is that for high tax rates the Laffer Curve implies that total tax revenues decrease in the
tax rate and hence the subsidy becomes again small. The main effect of taxes is then that
they push more sellers to participate in the initial tax-exempt auction, and that improves effi-
ciency.

4. Optimal government interventions

In this section we return to our general model and provide three policy results. We as-
sume that the government has a fixed intertemporal budget (see Eq. (5) for a formal state-
ment of the constraint) and chooses a policy to maximize total surplus subject to the bud-
get constraint. First, for a general distribution of sellers’ valuations, F (c), and buyers’ val-
ues, v (c), we show that an optimal policy always includes high taxes for some time A af-
ter time ¢t = 0. This effectively closes the market for ¢ € (0, A) and induces bunching of
trades at time ¢t = 0. Importantly, as more seller types sell at time ¢+ = 0 because of the
taxes soon after, the equilibrium price increases, inducing even more trade. Second, under
a regularity condition on F (¢) and v (c), we characterize optimal interventions for a given
budget constraint. It involves using all the resources to subsidize trade at + = 0 and setting
A = oo, effectively allowing only one opportunity to trade. Third, we characterize an optimal
policy subject to guaranteeing that the policy makes all types better off than under laissez-
faire.

4.1. Partial market closure is always optimal

The following result captures the central idea of this paper. Restricting the opportunities to
trade for some times is always part of optimal policy.

Lemma 1. Suppose v (0) > 0. For every r, F (¢), and v (c), there exists A > 0 such that an
optimal policy has sufficiently high taxes for t € (0, A), so that there is no trade during that time.

We provide in Appendix A a combined proof of Lemma | and Theorem 1, and explain the
intuition for both results after Theorem 1. To prove Lemma | we show that an optimal policy
results in trade in at most two distinct times and use mechanism design tools to establish the
claim.!”

In Lemma 1, we assume that v (0) > 0. In case v (0) = 0, there is no trade in the laissez-faire
equilibrium. Therefore, if taxes could induce any trade, we would get a strict welfare improve-
ment. It is always possible if the government has a positive budget to provide a net subsidy.
Whether it is possible even with no subsidies depends on the shapes of F (c) and v (c). When the
government cannot use subsidies, in some cases, even the optimal policy cannot induce any trade
(for an example see Section 4.4); while in some cases taxes alone can induce trade and improve
welfare (for example, when F (¢) = ¢ and v (¢) = /c).

17" After a transformation of the problem, the proof is mathematically analogous to the proof of Lemma 1 in Samuelson
(1984).
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4.2. When extreme policy is optimal

Lemma 1 shows that closing the market for a potentially short amount of time, A, is always
part of an optimal policy. We next show that under a regularity condition the optimal policy calls
for A = oo. That is, effectively allowing trade only once.

Definition 2. We say that the environment is (strictly) regular if 1’;8 (v (c) —c) is (strictly)
decreasing.

The ratio ,’;Ef) (v (c) —c) represents the relative marginal effect of speeding up trade of
type ¢ on the social surplus and the information rent of the seller. This regularity condition is
also similar to the standard condition in price theory that the marginal revenue is monotone.
In particular, think about a static problem of a monopsonist buyer choosing volume of trade,
F (c), by making a take-it-or-leave-it offer equal to P (¢) = c¢. The F.O.C. of this problem is:
f () (w(c)—c)— F(c) =0. A decreasing ratio ;8 (v (c) — ¢) guarantees that the marginal
profit (the left-hand-side of the F.O.C.) crosses zero exactly once. If we assumed constant gains
from trade, as in Philippon and Skreta (2012), then the regularity condition would have been sim-
ply a monotone hazard rate property (i.e. log-concavity of the distribution of types), a standard

assumption in mechanism design. Under this condition we can prove the following result.

Theorem 1. If the environment is regular, a competitive equilibrium for a tax policy

s<0 fort=0
t>H otherwise’

T =
where the initial subsidy s consumes all the government’s budget and H is high enough so
that there is no trade after t = 0, maximizes total surplus over all possible policies and all
corresponding equilibria.

Moreover, if the environment is strictly regular, the competitive equilibrium for this tax policy
is unique.

The details of the proof are in Appendix A, but here we outline the main steps (and provide
intuition for Lemma 1 as well).

We start with a mechanism design problem. A market designer maximizes expected gains
from trade by choosing a direct revelation mechanism (mapping reported types into a probability
distribution over times of trade and into payments), is allowed to cross-subsidize sellers trading
in different periods, but has to satisfy the budget constraint on average. We then argue that the
optimal mechanism can be implemented by a tax policy and a corresponding equilibrium.

For a given mechanism, let G; (c¢) denote, for a given type, the (cumulative) distribution over
times of trade. The expected discounted time to trade for this type is then:

x(c)= / e "'dG, (o),
0

and since all the traders are risk-neutral, their expected payoffs and total surplus depend on G; (¢)
only via x (c).

In the direct revelation mechanism, the designer chooses x (c) and a net transfer to type c,
P (c), to maximize overall welfare:
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1

max /x () (v(c) —c) f(c)dc “4)
x(c),P(c) g

subject to the budget constraint:
1
/[x(C)v(C)—P(C)]f(C)dc+bZO, 5)
0

where b > 0 is the government’s budget'®; the truth-telling constraint:
ceargmax (1 —x(¢))c+ P (¢),
c

and individual rationality for the seller.

Truth-telling implies that the equilibrium payoff of type ¢, U (c), has to satisfy U’ (c) =
(1 —x (c)) almost everywhere, and x (c¢) has to be weakly decreasing. As usual, in any opti-
mal mechanism the highest type, ¢ = 1, is kept down to its outside option, U (1) = 1. We use
this to combine the truth-telling and the budget constraints and express the latter in terms of the
allocation only, x (¢):

1

F(c)
/x(c)(v(c)—c——)f(c)dc+b20. (6)
, f©

In the decentralization of the optimal mechanism we describe below, buyers and sellers trade
directly with each other, but in the mechanism design approach we assume the designer acts as an
intermediary, committing to a mechanism in which it buys the assets from the sellers and resells
them immediately to buyers. Constraint (6) incorporates buyers’ IR constraints by assuming that
the designer re-sells the assets at a price equal to the expected value of the asset conditional on
the set of sellers trading in a given period. In this way, buyers’ IR constraints bind, the designer
resells efficiently, and fol x (c)v(c) f (c)dc is the total expected present value of the revenue
the designer collects from buyers. Constraint (6) also incorporates the IR and IC constraints of

the sellers: the minimal amount the designer has to pay the sellers is fol x (c) (c + 5;8) f(o)dc
F(c)

where ¢ + 70 is the usual virtual cost of trading with type ¢ that combines the IR constraint of
each type and the information rent.
Next, the Lagrangian for the problem is linear in x (¢), with the derivative of with respect to

x (¢):
L©)=W()—o) fe)A+A)—AF (o), (7)

where A > 0 is the Lagrange multiplier on constraint (6).

Notice first that v (0) > 0 and f (0) > 0 imply that L (0) > 0. Since L (c) is continuous and
incentive compatibility requires that x (¢) is decreasing, it is optimal to set x (¢) = 1 for ¢ < ¢*,
for some ¢* > 0. If the budget constraint does not bind, the Lagrange multiplier A = 0. Then
L (c) is positive for all ¢ and the optimal ¢* = 1. In that case all types trade at time t = 0 and

18 Budget constraint (5) incorporates the government’s option to either hold the assets to maturity or sell them to the

buyers at a fair price, in either way receiving /01 x (c)v(c) f (c)dc in expectation. See discussion below.
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there is no loss of closing the market after time 0. When the budget constraint binds, then L (1)
is strictly negative. Therefore L (c) crosses zero at least once.

The regularity condition implies that for any A > 0, L (c¢) crosses zero only once. That, in
turn, is a sufficient condition for the optimal solution to have a bang-bang property: types below
a threshold c¢* such that L (c*) = 0 trade immediately, and types above the threshold never trade.
That solution can be implemented by a competitive equilibrium imposing sufficiently high taxes
after the initial trade. Given these taxes, if the regularity condition holds strictly, the equilibrium
is unique. Hence this extreme intervention is the most efficient.'”

What happens when L (c) crosses 0 more than once? Now it may be possible that the optimal
x (c) has an intermediate value in (0, 1) for ¢ in some range (cy, ¢j) (for “ironing” reasons famil-
iar from mechanism design). The claim is that there is always an optimal mechanism in which
there is at most one range with such an intermediate x (c¢). The intuition is as follows. Suppose
in the interval (c1, ¢2), the optimal x (¢) = x1 € (0, 1), and in the interval (c2, ¢3), the optimal
x (c) = x2 € (0, x1) (the monotonicity of x (¢) requires that x; > x2). In both of these intervals,
the average contribution of these types to the budget constraint, v (¢) —c¢ — ?g , must be negative
since otherwise we could improve upon the mechanism by increasing x (c¢) (it would improve (4)
while relaxing (6)). Now, consider increasing x> by &> and decreasing x; by €1 in a way that
the constraint (6) still binds. If the net effect on (4) is weakly positive, we can do it until x (c) is
constant on the range ¢ € (c1, c3), and at least weakly improve total surplus. If the net effect is
strictly negative, we can strictly improve the objective (4) by reducing x> by &1 and increasing
x1 by €1. We can do it until either x; = 1 or x = 0, removing the possibility that the optimal
mechanism requires trade in more than two periods.’

When the optimal mechanism has trade only at x € {0, x, 1}, we can implement it via a policy
that induces trade only at times 0 and A, such that x = e~"?, and high taxes in any other period
so that no type trades in times other than 0 and A. Knowing which types are supposed to trade
at A, we can figure out the market price and subsidy so that the highest type is indifferent between
trading at that price and holding the asset forever (and the subsidy has to be such that the buyers
break even on average). For time 0, the tax or subsidy has to be such that the marginal type is
indifferent between trading immediately, and waiting to trade at A and the higher price. In case
the optimal mechanism has trade at A and b = 0, the optimal policy requires a tax at time 0
that is used to subsidize trade at time A, since as we argued above, the traders at A contribute
negatively to the budget constraint.

Policy implications of our Lemma | and Theorem 1 are in stark contrast to recent results in
the literature. Optimal government interventions in similar models (although, admittedly richer)
have been studied recently by Philippon and Skreta (2012) and Tirole (2012). In these papers, the
government offers financing to firms having an investment opportunity and it is secured by assets
that the firms have private information about. That intervention is followed by a static competitive
market in which firms that did not receive funds from the government can trade in a private
market to raise funds. This creates a problem of “mechanism design with a competitive fringe” as
named by Philippon and Skreta (2012): the government intervention affects the post-intervention

19 Details of the proof are in Appendix A. The proof uses standard mechanism design tools, similar to Samuelson (1984)
in a static environment. The contribution of our proof is to apply these methods to characterize optimal intervention in
a dynamic market. On the technical side, we contribute by establishing a sufficient condition for the optimal mecha-
nism having trade only at + = 0, and showing that the described policy induces a unique competitive equilibrium that
implements the outcome of the optimal direct revelation mechanism.

20 Note that the reasoning relies on both the objective function and the constraint being linear in the allocation, x.
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equilibrium and vice versa. This effect is shared by our model: in our example from Section 3
the amount of trade at r = 0 depends on the price after the taxes are removed and that in turn
depends on which types trade at time O.

Both papers obtain a result that shutting down the private market does not improve welfare:
see Proposition 2 in Tirole (2012) and Theorem 2 in Philippon and Skreta (2012). Since the
post-intervention market creates endogenous IR constraints for the agents participating in the
government program, making the market less attractive could make it easier for the government
to intervene. However, these two papers argue that this is never a good idea.

As hinted by our benchmark example and generalized in Lemma | and Theorem 1, taking
into account the dynamic nature of the market changes this conclusion. The key difference in the
models that leads to these opposing results is that both Philippon and Skreta (2012) and Tirole
(2012) assume a static model of the private market, while we study a dynamic market. Setting
taxes prohibitively high after initial trade, so that all trade takes place at £ = 0 in our model,
turns out to be equivalent to assuming that the private market is opened only once after the
government intervention, as in their papers. Since their models satisfy the regularity condition,
such one-time-trading with no government intervention is optimal by our Theorem 1. However,
if the market is dynamic, our results show that some taxes pushing trade to bunch early are
optimal.

4.3. Pareto improving interventions

It is worth noting that the optimal ex-ante policy generally makes low types better off than
in the laissez-faire economy but makes high types worse off. High types eventually trade in the
laissez-faire equilibrium but with the optimal intervention they never trade. A natural question to
ask then is what is the optimal government intervention that would make all types weakly better
off than their laissez-faire outcome. This is a hard problem because the standard mechanism
design approach does not work well in this case. These new constraints, which we incorporate as
IR constraints, do not allow us to do simple pointwise maximization.

As a first step, it is worth noting that having a short period ¢ € (0, A) with high taxes can lead
to a Pareto improvement over the laissez-faire economy. The high taxes lead to a market closure
during the period A. The closure generates bunching of trades at + = 0, which in turn leads to
higher prices and even more trade. This positive feedback effect leads to more trade at r = 0
with the closure than one would get in the time interval 7 € [0, A] without the closure.”! This is
illustrated in Fig. 4 below. For short closures, the solid line representing the cutoff at time zero
is above the laissez-faire cutoff (dashed line).

Importantly, since after time A there are no more taxes, the differential equation describing the
equilibrium path of k; for r > A is the same as in the laissez-faire economy. The only difference
in equilibrium comes from the initial condition at time # = A: with a short closure, the cutoff
at t = A, which we denote by «x, is higher than that without the closure, which we denote by
kZF . Thus, all types higher than kA trade sooner with the closure and since they trade at the same
prices (since these types are fully separated) they are strictly better off than in the laissez-faire
economy. To see that lower types are also better off, note that, by revealed preference, type «a is
no worse off by pooling since it could wait until A and trade at v (k). Lastly, recall that in the
laissez-faire economy all types k < ka are worse off than type ka because U (c) is increasing.

21 See the intuition following the formal statement of the result below.
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Fig. 4. Closures and trade.

In contrast, with the short closure, types k < ka get the same payoff as type k. Thus they are
strictly better off with the intervention than in the laissez-faire economy. Summing up, this policy
is a Pareto improvement.

Formally we consider the following tax policy:

A [0 fort € {{0} U[A, c0)}
T =T = .
T >0 otherwise
That is, there is tax-exempt trading at t = 0, followed by a (short) time interval A in which
transactions are taxed at a high rare 7 such that no type wants to trade, after which taxes are
reduced back to zero.

Lemma 2. Suppose v (0) > 0. For every r, F (c), and v (¢), there exists A > 0 such that an equi-
librium with government policy t> yields strictly higher gains from trade than the laissez-faire
equilibrium. Moreover, it is preferred by all seller types (Pareto improvement).

The key step of the proof is to show that kiF < ka for sufficiently low A. In turn, to show
this, the key result (derived in Appendix A) is that:

LF
lim 28 _ 5 fim 28
A—0 JA A—0 0A
Since as A — 0 both k5 and ng converge to 0, this means that for small A approximately twice
as many types trade before A if the government intervenes in (0, A).

The intuition is as follows. As the government announces the tax plan 7=, some types that
were planning to trade in (0, A) now would prefer to trade at O even if the price at 0 did not
change. The reason is that not taking the price po implies a fixed delay cost. It turns out that the
set of types that decide to take that fixed pg grows in A approximately as fast as does k’&F .

The doubling of early trade is then achieved because pooling of trade at time O reduces the
adverse selection faced by the buyers and hence the price pg increases. For small A the price is
approximately half way between v (0) and v (k). As the price goes up, even more types prefer
to trade at O and the adverse selection problem is reduced even further, making pg even higher,
and so on. Because prices grow at half the speed of v (kiF ), the resulting cutoff, ka is twice as
high as k5F'.

We now consider an optimal policy that is a Pareto improvement over the laissez-faire equilib-
rium. That is, we ask what mechanism (x (c), P (c¢)) maximizes (4) subject to (5) and constraints:

A

U (c) > Urr (c) forall c, ®)
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where Urr (c) is the laissez-faire equilibrium payoff of type ¢ and U (c) is the payoff in the
mechanism.

It turns out that the optimal Pareto-improving policy always shares an important feature of
this example: an atom of types should trade at time 0. Moreover, in many environments the
policy described above is in fact the optimal Pareto-improving policy. We obtain the following
characterization:

Theorem 2. (i) For every r > 0, F (c), and v (¢), the optimal Pareto-improving intervention has
an atom of types trading at t = 0.

(1) If (v (c) —c¢) f (¢) is (weakly) decreasing, then an optimal Pareto-improving intervention
can be implemented as a competitive equilibrium with taxes:

70<0
T > H fort € (0, A)
;. =0fort > A,

so that the subsidy 1y exhausts all the government’s budget and H is high enough so that there
is no trade for t € (0, A). In equilibrium, types below a threshold c* trade at time 0 and types
above c* trade at the same times and prices as in the laissez-faire economy (so that A =t (c¢*)
in the laissez-faire).

Using the envelope theorem, we can express constraints (8) alternatively as
1
/ (x(@)—y(@)dc+U@1)—=Urr(1)=0forallc,

c

where y (c) = e7"(©) is the discount factor related to the time type ¢ trades in the laissez-faire
equilibrium, ¢ (c). Part (i) is immediate by noticing that trading with small ¢ immediately con-
tribute positively to the budget constraint and the objective function, and relax the IR constraints.

For the proof of part (ii), the key step is the observation that the derivative with respect to
x (c) of the Lagrangian (L p (c¢)) that combines the objective function and the budget constraint
is strictly decreasing under our assumption that (v (c¢) —c) f (c) is decreasing. It is then opti-
mal that all types for which Lp (c) is positive trade immediately. For all the other types, the
Lagrangian is maximized by postponing their trade as much as possible. That delay is limited
however by the IR constraints (8), which require x (c) > y (¢) > 0 for some types even if the
L p (c) at those types is negative.”” The regularity assumption in Theorem 2 implies that L p (c)
is monotone. We use this monotonicity to show that it is welfare-improving to increase x (c¢)
for small types and decrease it by the same amount for large types if it allows us to still keep
IR constraints satisfied. Such local variation argument pushes the IR constraints to be satisfied
exactly for all types for which the L p (c) is negative. So the optimal allocation is x (¢) = 1 for
types ¢ < ¢* and x (¢) = y (c) for all higher types. Finally, ¢* is such that all budget is spent at
the trade at time zero and the price is high enough that type ¢* is indifferent between trading at
that price and waiting till ¢ (¢*) to trade at v (c¢*). This allocation can be implemented with the
tax policy described above.

22 Without these constraints, Theorem 1 established that optimal mechanism has trade only at time 0 under a weaker
regularity assumption.
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Fig. 5. Payoffs and policy with (right) and without (left) Pareto improvement constraint.

The left panels of Fig. 5 above illustrate for the case F (c¢) =c and v (c) = % the payoffs

and optimal policy without the constraint of having to make each type at least as well off as in the
laissez-faire economy. The panels on the right show how the policy and payoffs are modified to
ensure the intervention is a Pareto improvement. L p (¢) and L (c) are respectively the derivatives
of the Lagrangian with and without the additional constraint that the policy must lead to a Pareto
improvement.

4.4. Jump starting the market

We now show via an example that if the adverse selection problem is sufficiently severe, even
the best budget-neutral intervention is incapable of generating any trade. Consider the following
example: F' (c) is uniform in [0, 1] and

1.5¢
v(c)= { I+c
2

This example satisfies the regularity condition. Hence, Theorem 1 implies that the optimal
budget-neutral intervention would induce trade only at ¢ = 0. Unfortunately, as in Akerlof’s
original example, even if there is only one opportunity to trade, we get complete market break-
down.”? The equilibrium cutoff type x must satisfy:

ifc <
if c >

D=1 —

K = po,
but the zero-profit condition is
po=E[v(c)|c<«k].
Since in this example E [v (¢) |c < k] < %/c, the only solution is x = 0.

23 The classic example from Akerlof has v (¢) = 1.5¢ and no trade in (static) equilibrium. We keep close to his example,
but modify v (¢) slightly to have v (1) = 1. Note that it implies even less gains from trade than when v (¢) = 1.5c¢.
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Now suppose the government allocates a budget b > 0 to bailout this market. Suppose it uses it
to subsidize the initial trades with a proportional subsidy s. When b < % the optimal intervention

has s = % (and prohibitively high taxes after t = 0), types below ko = 2+/b trade at r = 0 and
buyers pay pg = %«/E per unit. Total gains from trade (net of transfers) are:

2vb
S )= / (0.5¢)dc =b.
0

Since the buyers still break-even, every dollar the government spends increases the welfare of
the sellers by 2 dollars, one from the direct transfer and one from the improvement in the effi-
ciency of the market (if b > %, the marginal effect is even higher). Thus, if the deadweight loss
associated with raising taxes from other markets is not too large, bailouts are welfare-improving.

Remark 1. It is important to note that the exact form of the intervention is not important, as
long as it leads to the same discounted probability of trade and gives the same surplus to the
lowest type.”* A proportional subsidy, as assumed for concreteness in the paper, or a government
guarantee on the payoff of the assets, as implemented during the crisis with the Public—Private
Investment Program for Legacy Assets, would have equivalent effects. The outright purchase
of assets done with the TARP program is also equivalent, as long as we take into account the
proceeds in the budgeting for the program, that is, consider just the expected net cost of the
program as the government’s budget.”

5. Extensions and discussion

In this section we discuss three important additional considerations. First, we extend our
model to account for the possibility of additional sellers arriving after + = 0. In this case the
optimal policy involves controlling the price in the market rather than the times at which the
market is open. Next, we point out that if the government cannot commit, it might want to use
its budget constraint as a way to induce commitment to high taxes in the future by spending
resources at ¢+ = 0. Lastly, we discuss the importance of the government acting quickly since
delayed interventions can be welfare reducing.

5.1. Arrival of additional sellers

So far we have assumed that all the sellers are present at time zero. A natural concern, partic-
ularly when the optimal policy calls for allowing trade only at = 0, is what happens when we
account for the possibility that additional sellers can arrive over time.

In order to address this concern, we augment our model and assume that additional sellers
with a mass of size m; might arrive (stochastically or deterministically) over time. We assume
that all of the sellers’ types, regardless of their time of arrival, are drawn from the same type
distribution F' (c).

24 This result is referred to in the mechanism design literature as “Payoff Equivalence”.
25 As we discussed in the Introduction, the government proceeds can either come from holding the assets to maturity or
alternatively from creating a portfolio and selling its shares.
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Theorem 3. Suppose sellers of mass m; arrive to the market at a Poisson rate p;. If the environ-
ment is regular, the optimal budget-balanced (on average) mechanism can be implemented with
a government program in which the government offers to buy all securities in the market at a
constant p* (and does not allow trade at higher prices in the market).

If the government does not have a budget, then it can simply decentralize the optimal policy by
restricting the price in the market to p*. With a budget, a decentralization involves a combination
of a fixed market price and a proportional subsidy.

Proof. Consider a relaxed problem in which arrivals are observable and the government can
design cohort-specific policies. That is, the government chooses for each cohort, conditional on
it arriving at time ¢, policy x; (¢) (and the corresponding P; (c)) to maximize:

00 1
gl(ac))( Ep/ Lime™"" /x, (©)(v(c) —c) f(c)dc | dt
0 0
00 1 1
st. 0< Ep/ Lme™"" /(xt (c)(w()—2c)) f(c)dc— /x, (¢) F(c)dc | dt + b,
0 0 0

where 1, is the indicator function for the arrival at time ¢ and the expectations are over the arrival
times of the new sellers. The Lagrangian of this problem is:

00 1
m(a;)(Epfltm[e—” /x, @[ —c) fe)A+A)— AF (c)]dc | dt + Ab.
e 0 0

It is immediate that the optimal allocation x; (c) is the same for all times of arrivals. Since the
environment is regular, by Theorem 1 it has the bang-bang property: x; (c) = 1 for ¢ below a
threshold ¢* and x; (¢) = 0 above ¢* (and the threshold is constant over time). A way to imple-
ment this constant trading threshold is to set a constant price p* = c¢*. Under this policy, arriving
sellers would either sell immediately or not at all. Hence this policy remains optimal even if the
government cannot condition on the arrival times. 0O

The proof can be trivially extended to an uncertain mass of arriving sellers (i.e., m; being
a random variable) or to deterministic arrivals. The optimal price is set in a way to exhaust
the budget on average. It is important for the policy that the government controls the private
market, not allowing trades at prices higher than p*. Otherwise, if the arrival time of a seller
was observed by the market, the high types would be able to get a better price after some delay,
undermining the optimal mechanism. In other words, even though the optimal mechanism now
has trade potentially in every period, it still is optimal to restrict trade in the private markets.

We finish by pointing out that Theorem 3 is related to Sobel (1991) who studies a monopoly
problem under commitment with the arrival over time of new consumers from a common constant
distribution. He shows that the optimal monopoly price is constant over time. Our result is similar,
but it requires additional assumptions about the distribution of types and gains from trade, namely
the regularity condition. This assumption is needed because our problem has interdependent
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values between buyers and sellers, and the government is required to balance the inter-temporal
budget. In other settings, these distinctions can lead to very different outcomes.®

5.2. Commitment via the budget

An important assumption in our model is that the government can commit to future taxes.
Without commitment, the government would like to revise its tax policy after the initial round of
trade, to allow even more trade. Full analysis of the case without commitment is left for future
work, but we illustrate with an example how the budget constraint can serve as a commitment
device.

Recall our example from Section 3 with F (¢) =c and v (¢) = I—JZFC It satisfies our regularity
condition and hence the optimal policy would have trade only at time = 0. Assuming the gov-
ernment has no resources (b = 0), the optimal policy would entail p =2/3 and ¢* = 2/3. The
government would be tempted to lower taxes and let trade take place again after time zero. If the
sellers anticipated these future opportunities to trade, they would alter their behavior at r = 0,
reducing the efficiency of trade. While it may not be possible to implement the optimal policy
without commitment to future taxes, if the government has commitment to satisfy its budget, it
may be possible to improve upon laissez-faire. In particular, the government could pick taxes
7, that would maximize the government’s tax proceeds in the future, borrow against them, and
spend all the money subsidizing trades at t = 0. The government would thus need to indeed keep
the taxes at ;" in order to be able to repay its debts. In this way the government still induces a
lot of trade to take place at # = 0 and, in our example, can obtain about half of the welfare gains
they could have obtained with full commitment.

5.3. The cost of delaying interventions

In practice it might take time for the government to act upon a crisis. In this section we
show that speed is often of the essence. Not only is it usually optimal to act immediately, as
established by Theorem 1, but delayed interventions can actually decrease surplus compared
to the laissez-faire equilibrium. In particular, we show that if the government is expected to
provide a bailout at some future time, it slows down (or even shuts down) trade prior to the
intervention. Even though the bailout has a positive direct effect on efficiency, it also creates
this negative endogenous/equilibrium effect of delay due to anticipation. The net effect can be
negative: the equilibrium welfare with a delayed subsidy can be lower than absent any interven-
tion.

We show this claim via two examples using the benchmark example from Section 3, with
v(c)= I—JZFC and F (¢) = c. We consider first the case of a deterministic date for the intervention
and then the case when the timing of the intervention is uncertain.

5.3.1. Delayed interventions at announced date
Consider the following policy:

TT_{—S fort =T
! 0  otherwise

26 For example, in a bargaining problem (without commitment), with independent values we get immediate trade (the
Coase conjecture result) while with interdependent values the equilibrium typically exhibits delay.
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The government has a dynamic budget constraint ¢ ™" TspT |K7| < b, where |K7| is the mea-
sure of types that trade at T and pr is the market price buyers pay at 7', so that the left hand side
is the time-zero present value of the total subsidy at 7.

For any size of the intervention, b > 0, there exists a T such that if T < T there is no trade
in equilibrium until 7 since all sellers prefer to wait for the subsidy than to trade immediately.
Thus, in this range of 7' the competitive equilibrium has atom of trade at T followed by smooth
trading as in the laissez-faire equilibrium. The following conditions pin down the equilibrium for
T<T7

First, denote by « the highest type trading at T'. This type has to be indifferent between trading
at the subsidized price and trading after the subsidy is removed:

pr(1+s)=pr+ =v(),

where the second equality follows because after 7' the equilibrium coincides with the laissez-faire
equilibrium with a boundary condition k7 = k (and hence the zero-profit condition with smooth
trading implies p; = v (k;)). The zero-profit condition for prices at T is:

pr=E[v(c)|c=«].
Finally, the budget constraint is:
e T prsk =b.

From these equations (using v (c¢) and F (c¢) from the benchmark example) we obtain:

Kk =2V belr.

Assuming that b is small enough that x < 1, after T trade is smooth and we can use the
characterization of the laissez-faire equilibrium in Section 3 to compute:

ke=1—(1—x)e =1,

Inverting it yields the time at which types k > « trade:

f(k)=—1<ln;_k>+T.

r — K

That completes the characterization of the equilibrium.”®

Present value of the gains from trade in equilibrium is:

sr<n=et ([ (5o [ (1) (57

Since b = 0 corresponds to no intervention, we have S (0, T) = Spr = %.

27 When T is large, the analysis is more complex. The equilibrium then has continuous trading until some time 7°*;
from T* to T, the market shuts down waiting for the subsidy, an atom of sellers trade at 7', and smooth trading follows
from then on.

_ = 2
28 1t implies T is the solution to e™" T (1+s) pr = v (0) which simplifies to a solution of b = J—‘% where z =

e T,
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Surplus from Delayed Intervention
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Fig. 6. The cost of delayed interventions.

How does delay, T, affect gains from trade?”’ There are two opposing effects. On the one
hand, later subsidy implies that there is more delay until the market starts trading at 7. On the
other hand, since the unused budget earns interest, it allows for more efficient trade at 7 and
afterwards. It turns out that in our benchmark case the first force is stronger. In particular, for
b>0and T <T and 2vbeT” < 1 we get the following result:

Proposition 2. Assume v (c) = F< and F (c) =c.

1) Despite the government being able to save at rate r, the equilibrium welfare is decreasing in
7, 500 2
2) Moreover; there exists T* < T such that the subsidy delayed by more than T* destroys sur-

plus, thatis S (b, T) < SypforT € (T*, T).

In words, delay is costly despite the budget growing with delay. Even more surprisingly, the
second part of the proposition states that the decrease in the surplus can be so large as to drive
the total surplus below the surplus with no intervention. For example with b = % and r =1, if

T >T*=0.387,then S(b,T) < % = Sy (in this case T = 0.622). This is illustrated in Fig. 6.

5.3.2. Delayed interventions with uncertain timing

In practice the market might expect the possibility of a government subsidy but be uncertain
about its timing. We argue that this creates incentives to wait for the arrival of the intervention
and may be detrimental to welfare even taking into account the benefits of the subsidy if it
materializes.

To illustrate this problem, we analyze a model in which the government intervention arrives
at a random time as a Poisson process with intensity A. Suppose that when it finally intervenes,
the government subsidizes trade sufficiently that all types trade (by offering sufficient subsidy
for p; (1 4+s)=1).

The equilibrium dynamics depend crucially on the level of A If A is small, there will be trade
even before the government subsidy arrives. If it is high, the market will shut down completely
until the arrival of the subsidy.

29 The effect of b is obvious: if b is small enough so that not all types trade at 7', S (b, T) is increasing in b for all T,
because higher b uniformly speeds up trade.
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We start with the first, more interesting case. If A < r, then trade is smooth until arrival of the
subsidy. Equilibrium cutoffs k; are characterized by the following differential equation (with a
boundary condition kg = 0):

r(v(ke) — ko) =" (k) kg + 1 (1= (k) - 9

The left-hand side is the familiar discounting cost of not taking the price today. The first term
on the right-hand side is the familiar increase in price in case the intervention does not arrive
(as before, both use the zero-profit condition p; = v (k;)). The new term is the last term on the
right-hand side: by delaying trade, the current cutoff type can hope to receive the subsidized price
1 instead of the non-subsidized price v (k;).

A higher A has two opposing welfare effects. The direct effect is that it speeds up the arrival
of the subsidy, which increases welfare. The indirect, equilibrium effect, is that it slows down
trade before arrival and it decreases welfare (the indirect effect can be seen from (9) since l%t that
solves it is decreasing in A).

Connecting this observation to real-life events, market participants’ beliefs that Federal Re-
serve and/or the US Treasury would intervene in some financial markets, might have contributed
to the reduction of trade volume in some of the those markets after the collapse of Lehman
Brothers. While asymmetric information was likely the primary culprit, the expectations of fu-
ture actions could make it worse.

Using v (¢) and F (c) from the benchmark example, the differential equation (9) simplifies to:

r=210—=k)=k.

After solving it and computing total welfare, we can show that the negative, indirect effect
always dominates (unless A is so high that the market shuts down completely):

Proposition 3. Assume v (¢) = 1% and F (c) = c. Suppose the government subsidy that induces

first-best trade arrives at a Poisson rate A.

1) If & <, there is trade in equilibrium even before the subsidy arrives and the equilibrium
welfare is strictly decreasing in A.

2) If A > r then the market shuts down in the anticipation of the subsidy and equilibrium welfare
is increasing in A (as A — oo the surplus converges to first-best). In that range, the surplus is
higher than the laissez-faire equilibrium surplus if and only if X is sufficiently higher than r.

In words, Proposition 3 demonstrates that, over a large range of arrival rates, the anticipation
of future intervention reduces welfare in our benchmark example. In fact, for the delayed subsidy
to have a hope at improving welfare, the arrival rate has to be sufficiently high so that the market
closes down completely.

Fig. 7 illustrates the results for r = 1.

The intuition behind the second part of the above proposition is straightforward. For A suffi-
ciently large there will not be any trade until the government intervenes. Hence, there is only the
first, direct effect. Since equilibrium surplus is continuous in A and it decreases from Szr as A
increases from O to r, it has to increase sufficiently more to recover back to Sy r.
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Intervention with Random Arrival
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Fig. 7. Cost of random arrival of subsidy.

6. Conclusions

In this paper we have analyzed government interventions in a dynamic market with asym-
metric information. Our main finding is that even without the use of subsidies, efficiency can be
improved over the laissez-faire equilibrium. Setting high taxes for a short period, after an initial
tax-exempt auction or trading window, induces more sellers to trade early. This bunching im-
proves the average quality traded in the market which in turn leads to higher prices. As prices
increase, more sellers choose to trade early, further improving welfare.

Remarkably, under a fairly commonly used regularity condition, the optimal government pol-
icy is to set high taxes for ¢t > 0, effectively shutting down private markets. Of course these
results have to be interpreted with caution. As we show there might be natural reasons to depart
from this recommendation. First, this recommendation leads to both winners and losers and can
therefore lack the support necessary to be implemented. Instead, a short closure can actually be
Pareto improving. That is, all seller types are made better off. We also show that if more sellers
arrive at later dates, it is no longer optimal to have high taxes for ¢ > 0. Instead, price controls
should be implemented. By keeping the price constant, the sellers, regardless of when they arrive,
effectively see only one opportunity for trade. This leads to the same bunching of types within a
cohort that is achieved via high taxes, but with the necessary flexibility to accommodate arrivals
of future cohorts.

Freeing the government from the requirement that its intervention must be budget-neutral, i.e.
allowing for bailouts, can be very valuable. Moreover, although the particular form in which the
subsidy is provided is not important, its timing is. Subsidies can greatly enhance welfare when
provided immediately or quickly after the shock, but they can even destroy surplus if they are
implemented with a delay and anticipated by market participants.

Appendix A

Equilibrium computation for initial subsidy followed by a constant permanent tax:

The equilibrium conditions are as follows. First, cutoff type at time 0, k = kg+, must be indif-
ferent between pooling with lower types and getting the initial subsidized price pg, or waiting an
instant to separate from them and getting a higher price but being taxed:

po(l+s)y=max3vk)(1—1),x ¢, (10)
——

=DPo+
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where the maximization captures the two possibilities: there will either be trade after t = 0 (with
buyers paying pg+ = v (k)) or no trade at all.
Second, the buyer zero profit condition at time # = 0 is:

po=E[v(c)[cel0,k]]. (11)

The unique solution to (10) and (11) pins down the equilibrium « and price pg given (s, T).

Third, if there is any more trade after time # = 0 (i.e. if 7 is not too high) it must be smooth.
The same reasoning as in the laissez-faire equilibrium holds after time zero. Equilibrium is then
pinned down by the sellers’ indifference condition:

r(pp(l—1)—k))=(1—1)p;

and the zero-profit condition p; = v (k;). Using the assumed form of v (¢) and given a boundary
condition «, the unique solution of this differential equation is:

K — l—r_ l—r_K e,,g,.
1+t 14+t

Inverting it, we get the following expression for the time at which each cutoff type k trades:

- 17—1 k(1 —1 1—
t(k):—r In d+on+e fork € |k, ! .
rt+1 k(l+t)+17-—1 1+7

Note that because of the tax, types such that (1 — 7) v (c) < ¢ do not trade in equilibrium. That
completes the characterization of the equilibrium for any (s, 7).

Finally, to verify that in equilibrium the intervention is budget-neutral, we require that for any
fixed t the subsidy s satisfies:

1
- 1+k
spok = r/e_”(k)%dk. (12)

K
The unique positive solution (s, k, pg) to (10), (11), (12) pins down the unique competitive
equilibrium in this example. With it we can calculate the total surplus associated with a given tax
rate 7:

1

S(r)=/(v(c)—c)dc+/e—’f(’<> v (ky) — ky) dk.
0

K

Omitted proofs:

Proof of Proposition 1. First, note that our requirement p; > v (k;) implies that there cannot
be any atoms of trade, i.e., that k; has to be continuous. Suppose not, so that at time s types
[ks, ks+] trade and kg < kg+. Then at time s + ¢ the price would be at least v (kg+) while at s the
price would be strictly smaller to satisfy the zero-profit condition (1E). If so, then for small ¢ all
types in [ks, ks+] would be better off not trading at s, a contradiction. Therefore we are left with
processes such that k; is continuous and p; = v (k;) at any time such that I%ﬁ > 0. If k; is strictly
increasing over time, we need that r (p, — k;) = p,: if price was rising faster, current cutoffs
would like to wait, a contradiction. If prices were rising slower, over any time interval starting
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at s, there would be an atom of types trading at s, another contradiction. So the only remaining
possibility is that k; is constant over some interval [s1, s2]. Since the price at s1 is v (ksl) and
the price at s is v (k‘vz), if there is indeed no trade in that time interval, then ps, = p;,. But then
there exists a positive measure of types k > kg, such that

v (ksl) - (1 — er(A‘zﬂ'l)) k 4 e" 52750y, (ksl) )

Since after s, there are no atoms of trade, the equilibrium continuation payoff of types k > ki,
is smaller than (l — el (52— 1)) k + e" 275Dy (k), since these types trade at price v (k), but later
than ¢ = s;. Since v (k) is continuous, there exists an & such that types k € [ks1 ks, + 8] would
strictly prefer to trade at t = s than to follow the postulated equilibrium. That leads to the final
contradiction. 0O

Proofs of Theorem 1 and Lemma 1. We use mechanism design approach to establish the two
results. The mechanism designer chooses a direct revelation mechanism that maps reports of the
sellers to (i) a probability distribution over times they trade, to (ii) transfers from the buyers to the
mechanism designer, and to (iii) transfers from the designer to the sellers. The constraints on the
mechanism are: incentive compatibility for the sellers (to report truthfully); individual rationality
for the sellers and buyers (sellers prefer to participate in the mechanism rather than hold the asset
forever and the buyers do not lose money on average); and that the mechanism designer does
not lose more money on average than its budget, b. We then characterize a tax policy and a
corresponding equilibrium that implements the same outcome as the optimal mechanism we
find.
Let G; (c) denote, for a given type, the distribution function over the times of trade. Define:

T
x(c) =/efrth, ().
0

Since all players are risk neutral, the surplus and all constraints of the mechanism depend on
G (¢) only via x (c). Hence, we can focus on general direct revelation mechanisms described
by two functions: x (¢) and P (c), where P (c) is the expected net present value of the transfer
received by the seller reporting type c.

The objective function of the mechanism designer is to maximize total surplus

max /x () (w(c) —c) f(c)dc. (13)

x(c)€[0,1],P(c)

We now describe the constraints.
The mechanism yields the following sellers’ value function:

U(E=P@)+1—-x())c (14)
= max P () +(1=x())ec. (15)

Using the envelope condition we can express it as:

1
Uc)=U(l) — f (1 —x (c))de. (16)
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Seller IR constraint is U (¢) > c; in the optimal mechanism it binds at ¢ = 1.%9 Incentive
compatibility for the sellers is satisfied if and only if the envelope formula (16) holds and x (c)
is weakly decreasing.

The buyers are willing to pay on average at most fol x (c)v(c) f (¢)dc. An optimal mecha-
nism leaves the buyers with no surplus (since we could reduce the payment to the buyers and use
the savings to increase efficiency of trade). Therefore, the budget constraint of the designer is:

1
/(x(c)v(c)—P(c))f(c)dc+b20.
0

From (14), we can write P (c) as:
Pc)=U(()— (1 —x(c))c.

Substituting this for P (c¢) in the budget constraint, we can express it as a function of the alloca-
tion alone:

1 1
f(x(c)(v(c) —c))f(c)dc—/(U(c)—c)f(c)dc+b20.
0 0

Next, we can use (16), U (1) = 1, and integration by parts to write the second term as:

1

1
/(U(c) —c)f(c)dc:fx(c)F(c)dc.
0 0
This yields the final form of the budget constraint:

1 1
/x(c)v(c)f(c)dc—/x(c)<c+%)f(c)dc+b20. a7n
0 0

The first term of the constraint is the revenue the designer can obtain from the buyers and the
second term is the amount he has to pay the sellers to participate in the mechanism that includes
their information rent.

We now optimize (13) subject to (17). The derivative of the Lagrangian with respect to x (c)
is:

L= -0 f@©1+A)—-AF(),

where A > 0 is the Lagrange multiplier on (17).!

Note that L (c) is (weakly) positive for ¢ = 0 (strictly if v (0) > 0) and negative for ¢ = 1
(assuming that b is not too large, so that the budget constraint is binding, and hence A > 0).

If 1{8 (v (¢) — ¢) is decreasing (which is our regularity assumption), then L (c) crosses zero
only once for any A > 0. Let ¢* be the largest solution to

30 By (16), if the IR constraint is satisfied at ¢ = 1, it is satisfied for all types. IR binds at ¢ = 1 since otherwise the
mechanism designer could reduce P (c¢) by a constant and still satisfy all constraints.

3L As strictly positive in the solution for sufficiently small 5. Otherwise the budget constraint would not be binding
and we would get x (¢) = 1 for all ¢ (first-best), violating (17).
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L(c)=0.
An optimal x (c) is then:
«, |1 ifc<c*
o (c)_{O ifc > ¢*

Since x* (¢) is monotone, a mechanism with this allocation (and appropriate P (c)) is incentive
compatible. The largest c* that satisfies the budget constraint (17) is the largest solution of:

b
E|v <c* =c*. 18
[(C)Ic_C]JrF(C*) ¢ (18)
To see this, note that the LHS is the average price per asset the buyers are willing to pay for assets
below c¢*, plus the total budget per unit of trade (total volume of trade is F (c*)). The RHS is the
reservation price of the ¢* seller.

A tax policy 19 =1 — E[v(cg|c§c*] =— I U(C];f(c)dc (and 7, = H for ¢t > 0) induces an equi-
librium such that there is trade only at time zero and that equilibrium satisfies (18) for some c*.
To finish the proof, we need to show that the solution to (18) exists and if the environment is

strictly regular, the solution is unique.

1) Existence. To see that there exists at least one solution to (18) note that

b
E <k]l—k+—— 19
[v(c)le <k] +F(k) 19)
is continuous in k, positive at k close to zero, and negative at k = 1 (as before, assuming b is not
sufficient to achieve full efficiency). So there exists at least one solution.
2) Uniqueness. To see that the solution is unique under the regularity assumption, note that
the derivative of (19) at any k is

f (k) b

When we evaluate it at points where (18) holds, the derivative is

S (k) —k)—1
F (k)
and that is by assumption decreasing in k.

Suppose that there are at least two solutions and select two: the lowest k; and second-
lowest k. Since kj, is the lowest solution, at that point the curve (19) must have a weakly
negative slope (since the curve crosses zero from above). However, our assumption implies that
curve has even strictly more negative slope at kg . That leads to a contradiction since by assump-
tion between [k, k] expression (19) is negative, so with this ranking of derivatives, it cannot
become 0 at kp . That completes the proof of Theorem 1.

Regarding Lemma 1, consider L (c) that crosses O more than once. Suppose that there exists
an optimal x (c) that takes more than three values, {0, x, 1}. The argument in the text explains
why, if x (¢) is a step function, we can achieve at least as high efficiency by a step function
with at most two steps. The only remaining possibility is that x (¢) decreases continuously over
some range (c, c2). In that case, for x (¢) to be optimal, L (c¢) has to be 0 for all ¢ € (cy, ¢2).
Suppose not. Suppose it is strictly positive at ¢ € (c1, ¢2). Then, since L (¢) is continuous, it is
strictly positive in a neighborhood of ¢, say from (é —¢&,C+ e), for some ¢ > 0. By increasing
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x (c) in this range to the level x (é - 8), we maintain monotonicity of x and strictly increase the
Lagrangian. Analogously, if L (¢) is strictly negative in (é —&,Cc+ s), we can reduce x (¢) in
this range to x (é + 8) and also get a strict improvement. So the only possibility is that L (c¢) =0
in that range. But then there exists ¢ € (cy, ¢p) such that if we modify x (¢) to be constant on
(c1,c2) at x (6), the budget constraint is still binding, the Lagrangian is not changed, and the
resulting x (¢) is still monotone. That means that we can always weakly improve by modifying
x (¢) to be a step function. The reasoning in the text completes the proof that a (weakly) optimal
mechanism has x (¢) that is a step function with at most two steps.

Finally, as we discussed in the text, this allocation can be implemented using a tax policy
described there.

That the trades at time 0 have to cross-subsidize trades in time A follows from the observation
that the second trade contributes negatively to the budget constraint and the first trade contributes
positively: otherwise we would increase x (c) for the second trade without violating the budget
constraint. O

Proof of Lemma 2. To establish that the market with 72 is more efficient than under laissez-
faire, we show an even stronger result: that for small A there is more trade at r = 0 with 2 than
with 7, = 0 over the time interval [0, A]. Since under t2 the equilibrium after A is characterized
by the same differential equation as under laissez-faire, if the boundary condition at A is higher,
all types trade faster in equilibrium under 2.

Let «a be the highest type that trades at = 0 under 72 (i.e. ka = ko+). Let kiF the equi-
librium cutoff at time A under laissez-faire. Since lima_0ka = lima_o k% = 0 (for ks see
discussion in Step 1 below), to establish that kA > kZF for small A, it is sufficient to show:

. dka . okEF
lim — > lim —=.
A—0 JA A—0 0A
Step 1: Characterizing lima_,¢ %'(—AA.

Consider policy 7. First notice that since 7, =1 > 0 for ¢ € (0,Al and 7; =0 for r > A,
for small A there cannot be any trade in ¢ € (0, A]. Suppose not. Let k* be the supremum over
types that trade in that time interval. All types that trade in that interval get a payoff no higher
than (1 — ) v (k*) (buyers would lose money if they paid more than p = v (k*), the government
takes 7 of that price, and the best case scenario is that they trade with no delay). For small A,
that payoff is smaller than (1 — e™"2)k* 4+ e~"2v (k*). Since pp+ > v (k*), all types that trade
in (0, A] would be strictly better off waiting for the tax to be removed, a contradiction.

When the taxes are removed after t = A, the continuation equilibrium is unique and is char-
acterized in Proposition | albeit with a different starting lowest type. Namely, for > A:

pr = (k)
r (k) = k) =" (k) ky
with a boundary condition:
kA = KA.

The break even condition for buyers (1E) at t = 0 implies:

po=E[v(c)|ce[0,kall.
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Seller optimality (2E) implies that type «a must be indifferent between trading at this price at
t =0 and selling for pp+ = v (ka) att = A:

ra)

v(ka)—po=(1—e (v(kA) —KkA) -

Combining these two conditions we get that ko is a solution to:

v(ka) — E[v(c) e €0, kall = (1—e2) (v (ka) — Kka). (20)
For small A this equation has a unique solution. Using implicit function theorem we can show
that:
dka  2rv(0)
im — = .
A—0 A v’ (0)

Intuitively, for small A, E[v(c)|c <c€[0,kp]] & M (because we have assumed that
f (¢) and v (c) are positive and continuous). So the benefit of waiting, the left-hand side of (20), is
approximately M; while the cost of waiting, the right-hand side of (20), is approximately
rAv (0). So for small A, ka solves approximately

—v(0
M —rAv(0)
which yields %LAA = 25,128) as A — 0.

.. . AkLF
Step 2: Characterizing lima_.q ﬁ.

Consider the laissez-faire economy. Since k; is defined by the differential equation
r (k) — ki) =v' (k) e,
for small A:
v (0)
v (0)’

and more precisely:

kZF ~rA

Hm2%§7:rv®)
A0 A v (0)°

Summing up steps 1 and 2, we have:

. dKa . okEF
lim — =2 lim
A—0 0A A—0 0A

which implies the claim.

Step 3: Pareto improvement

Take any A such that there is no trade in ¢ € (0, A] under 72 and that kiF < KA. Since all
types ¢ > k trade at the same price but sooner in the market with 72 than in the laissez-faire
economy, it is immediate that they all prefer the former.

Type ¢ = ka also strictly prefers 2 : while he is trading at # = 0, he has the option to trade at
p =v(ka) at t = A while in the laissez-faire economy he trades at the same price but later. By
revealed preference he is strictly better off under 2.
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Finally consider any type ¢ < k. All these types get the same payoff under T2:

U:(c)=U; (kp) =E[v(c)|c €]0,ka]] forall c <«ka.

On the other hand, it is immediate that in the laissez-faire economy the equilibrium payoff is
weakly increasing in type (by revealed preference, type ¢’ can trade at the same time and price
as any type ¢ < ¢’ and since ¢’ gets a higher payoff flow from holding his asset, his payoff from
this strategy is at least as high as type’s ¢). Combining these observations yields:

Urr (c) SULr (ka) < Ur (ka) = Uz (c) forall ¢ <xa
and that finishes the proof. O
Proof of Theorem 2. The optimization problem to find the welfare-maximizing Pareto-
improving allocation can be written as:

1

[x (©)[v(c) —clf(e)dc

max
x(e),U(D)>1

f )
1 i

0< U(l)—/(l—x(&))d& — 1—/(1—y(5))d5 for all ¢

c c

x (¢) weakly decreasing,

0
1
F(c)
s.t. Of/x(c)[v(c)—c— ]f(c)dc—(U(l)—1)+b
0

where recall from the body of the paper that y (¢) = e~ ""(©) is the discount factor related to the
time type c trades in the laissez-faire equilibrium.

The first constraint is the usual budget constraint. The second set of constraints is new: they are
equivalentto U (¢) > Urr (c), where we used Urr (1) = 1 and U’ (¢) = (1 — x (¢)). Re-arranging
terms, these constraints simplify to:

1
0§U(1)—1+/(x (©) — y (&) dé for all c. @1)

We refer to these Pareto-improvement constraints as “IR constraints.” Note that the IR constraint
for type ¢ depends only on the allocations for types ¢’ > ¢, changing the allocations for lower
types does not affect it.

For part (i) of the theorem, note that for small ¢, v (¢) —c — ?8 > (. Hence, setting x (c) = 1
increases the objective function while relaxing the budget constraint and all the IR constraints.
Hence, there is a range of types (at the very least those with v (¢) — ¢ — ?8 > (0, but possibly
more), for which the optimal Pareto-improving mechanism sets x (¢) = 1.

For part (ii) define

Lp@=@() - fU+A)-F@)A



W. Fuchs, A. Skrzypacz / Journal of Economic Theory 158 (2015) 371-406 403

where A is the Lagrange-multiplier on the budget constraint.*” Note that L p (c) is strictly de-
creasing since A > 0 and we assumed that (v (¢c) — ¢) f (c¢) is weakly decreasing.
We can re-state the optimization problem as:
1
max /x(c) Lp(c)dc— AT (22)

x(c),I'>0
0

1
s.t. 0§F+/(x (¢) —y(¢))dc forall ¢

x (c¢) weakly decreasing, (23)

where ' =U (1) — Upr (1).
We claim that the optimal solution to (22) is I' = 0 and:

© = 1 forc < c*
= y(c) forc>c*
where ¢* is the largest solution to:
c* 1
O/ |:v(c)—c— %] f(c)dc—i—[y(c) [v(c)—c— %}f(c)dc—{—bzo,

so that the budget constraint is binding.
Let (T, x (c¢)) be the optimal mechanism and without loss of generality assume that x (¢) is a
cadlag (right continuous with left limits) function. There are two parts to establish our claim:

Step 1: In the optimal mechanism I' = 0.

Step 2: Given I' = 0, in the optimal mechanism x (¢) = y (¢) for all ¢ > ¢*, and x (¢) = 1 for all
¢ < ¢*, where ¢* satisfies Lp (¢*) =0.

Step 1: Suppose by contradiction that I > 0. Since I' > 0, IR constraints are slack for types
close to 1. Let ¢’ be the largest ¢ such that U (¢) = Urr (c) (it exists since if we ignored the IR
constraints the solution would violate them, and because U (c¢) and Uy r (¢) are continuous in c¢).
Then, lim. » (x (c) — y (c)) > O since otherwise the IR constraint would be violated at some
¢ <. Moreover, x (¢’) < y (¢’) since otherwise the IR constraint would be slack at ¢’.

If T' > 0, we claim that the optimal x (c) = 0 for ¢ > ¢’. Suppose not. Let ¢” € (¢/, 1) be the
supremum c such that x (¢) > 0. Then, for ¢ € (c/ r—e", " ) decrease x (¢) to 0 and at the same
time for ¢ € (c’ o +¢ ) increase x (¢) to y (¢), picking ¢” and &’ in a way that this new allocation

X (c) satisfies f Cl, [x (c)—=x (c)] dc =0 and the IR constraint is still satisfied for all ¢ > ¢’. That
X (c) satisfies IR constraints for all types as well as the monotonicity constraint (recall lim, .
(x (¢) — ¥ (¢)) = 0). Finally, since L p (c) is decreasing, x (¢) improves objective (22) over x (c),
a contradiction. So it must be that x (¢) =0 for all ¢ > ¢’.

32 This is just like L (c) in Theorem 1 except that the multipliers are different.
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Now reduce I" by ¢ > 0 and construct a new x (¢) = (1 —a) y (¢) for ¢ > ¢’ and X (¢) = x (¢)
for ¢ < ¢/, where o € (0, 1) is a constant such that fcl/ [)? (c)—x (c)] dc=¢,sothat forall c <c’
the IR constraints are unaffected and for ¢ > ¢’ all IR constraints are still slack.>® Since Lp (c)

is decreasing in c, this change improves the objective function by more than

1

1
A8+/(£(c)—x(c))Lp(c)dc>A£+/()2(c)—x(c))Lp(l)dc
\ﬁf—d
¢’ ¢ ——A
1

=A8—A/[£(c)—x(c)]dc=o

c/

so we get a strict improvement since Lp (1) < Lp (c) for any ¢ < 1. Therefore, setting I' > 0
cannot be optimal.

Step 2: Let x (¢) be the optimal (cadlag) solution of (22) with the corresponding Lagrange
multiplier A. Let ¢* be the unique solution to Lp (¢) = 0. For types ¢ < ¢* it is clearly op-
timal to set x (¢) = 1 since it would relax the IR constraints and make the objective function
higher.

Now, suppose that the optimal x (¢) # y (c) for a range of types above ¢*. Then there must
exist a range of types above ¢* for which the IR constraints are slack. Let ¢; > ¢* be the supre-
mum of ¢ such that the IR constraints are slack. That implies that ¢ is the supremum over types
such that x (¢) > y(c) and for all ¢ > ¢; it must be that x (¢) = y (¢) since ' = 0 and the IR
constraints bind. Note that the IR must bind at ¢ = ¢* since otherwise we could reduce x (c)
in the neighborhood of (c*, ¢* + ¢) and improve the objective function.>* Therefore, there exist
constants ¢4 < ¢3 < ¢ < ¢y such that:

x(c) > y(c) forall c € (c2,¢1)
x(c)=y(c) forall c € (c3,¢c2)
x(c) <y(c) forall c € (ca,c3)

i
01/11614X(C) >y(),

where we allow for ¢3 = ¢ and the set (c3,cp) to be empty. Then we can find &1 and &4
(both positive) and adjust the allocation x (¢) so that x (¢) = y (c) for ¢ € (¢ — &1, c1) and
for ¢ € (¢4, cq +&4), and X (¢) = x (c¢) for all other ¢, where g; and g4 are chosen such that
J5H (R () =y (©))de =0 forall ¢’ > c4 and fci‘ (% (¢) —x (¢)) dc = 0 so that the IR constraints
for ¢ < ¢4 remain unchanged. This X (c) still satisfies monotonicity and IR constraints. Yet, since
Lp (c) is decreasing, it improves the value functions, a contradiction. The figure below illus-
trates the constants and the construction, with ¢y = ¢3 and with the allocation x (¢) decreasing
discontinuously at c;. O

3 Again, since limwc/ (x (¢) — y(c)) = 0, this ¥ (c) is decreasing.
34 1o satisfy the monotonicity condition it may require reducing x (c¢) over a larger range if x (¢) is constant over the
range (c*, c* +¢).
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Proof of Proposition 2. Denote z =¢~"T. Then the surplus can be written as:

S () = /‘ 1—c d—l—/ 1—c 1—c d _1 lb—i—l b
)=z 2 c T > c —6Z 3 32,/2.
\/Z

rT

So the surplus is increasing in e~

Evaluating the surplus at 7 = T, so that b = le (I_ZZ)Z , for T small enough that ¥ < 1 (so that

e T e (%, 1)), we get

$(.T) =5 (42— 1),

r

which is less than % forall e <1 (for z <1 it is an increasing function and at z =1 it is

b, o

Proof of Proposition 3. As we explained in the text, in case r > A the equilibrium is described
by the differential equation

(r - )\,) (1 — kt) = ]'C[.

Using the boundary condition ko = 0, we get a unique solution:
k[ =1- ei(ri)h)t.

If the subsidy arrives at time ¢, total surplus is:

t

1
S(t|k)=/e_rs (v(ks)—ks)ksds+e_r[/(v(c)—c)dc

0 kt
2=+ re~!Gr=22)
4 3r —2x

Taking expectation over the arrival time:

o0
12r — A
1) = A (e ™M) dt=-"—=
S ) fS(tI)(e ) 13
0

which is decreasing in A.
For the second part, when A > r, since upon arrival the government induces the first-best
surplus, which is % in our example, total surplus is

S(A)_1 A
T Ar4a
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